Regulation and function of the muscle glycogen-targeting subunit of protein phosphatase 1 (GM) in human muscle cells depends on the COOH-terminal region and glycogen content.

نویسندگان

  • Carlos Lerín
  • Eulàlia Montell
  • Teresa Nolasco
  • Cathy Clark
  • Matthew J Brady
  • Christopher B Newgard
  • Anna M Gómez-Foix
چکیده

G(M), the muscle-specific glycogen-targeting subunit of protein phosphatase 1 (PP1) targeted to the sarcoplasmic reticulum, was proposed to regulate recovery of glycogen in exercised muscle, whereas mutation truncation of its COOH-terminal domain is known to be associated with type 2 diabetes. Here, we demonstrate differential effects of G(M) overexpression in human muscle cells according to glycogen concentration. Adenovirus-mediated delivery of G(M) slightly activated glycogen synthase (GS) and inactivated glycogen phosphorylase (GP) in glycogen-replete cells, causing an overaccumulation of glycogen and impairment of glycogenolysis after glucose deprivation. Differently, in glycogen-depleted cells, G(M) strongly increased GS activation with no further enhancement of early glycogen resynthesis and without affecting GP. Effects of G(M) on GS and GP were abrogated by treatment with dibutyryl cyclic AMP. Expression of a COOH-terminal deleted-mutant (G(M) Delta C), lacking the membrane binding sequence to sarcoplasmic reticulum, failed to activate GS in glycogen-depleted cells, while behaving similar to native G(M) in glycogen-replete cells. This is explained by loss of stability of the G(M) Delta C protein following glycogen-depletion. In summary, G(M) promotes glycogen storage and inversely regulates GS and GP activities, while, specifically, synthase phosphatase activity of G(M)-PP1 is inhibited by glycogen. The conditional loss of function of the COOH-terminal deleted G(M) construct may help to explain the reported association of truncation mutation of G(M) with insulin resistance in human subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human skeletal muscle expresses a glycogen-targeting subunit of PP1 that is identical to the insulin-sensitive glycogen-targeting subunit G(L) of liver.

Insulin has been previously shown to regulate the expression of the hepatic glycogen-targeting subunit, G(L), of protein phosphatase 1 (PP1) and is believed to control the activity of the PP1-G(L) complex by modulation of the level of phosphorylase a, which allosterically inhibits the activity of PP1-G(L). These mechanisms contribute to the ability of insulin to increase hepatic glycogen synthe...

متن کامل

Identification of a Protein Phosphatase-1/Phospholamban Complex That Is Regulated by cAMP-Dependent Phosphorylation

In human and experimental heart failure, the activity of the type 1 phosphatase is significantly increased, associated with dephosphorylation of phospholamban, inhibition of the sarco(endo)plasmic reticulum Ca(2+) transport ATPase (SERCA2a) and depressed function. In the current study, we investigated the molecular mechanisms controlling protein phosphatase-1 activity. Using recombinant protein...

متن کامل

In vivo Characterization of Fusion Protein Comprising of A1 Subunit of Shiga Toxin and Human GM-CSF: Assessment of Its Immunogenicity and Toxicity

Background: Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. Methods: In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF...

متن کامل

Muscle-specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism.

Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased...

متن کامل

Deficiency in phosphorylase phosphatase activity despite elevated protein phosphatase type-1 catalytic subunit in skeletal muscle from insulin-resistant subjects.

Glycogen synthase is activated by protein phosphatase type-1 (PP-1). The spontaneous PP-1 activity accounts for only a small fraction of total PP-1 activity, which can be exposed by trypsin digestion of inhibitor proteins in the presence of Mn2+. We determined total PP-1 activity in muscle biopsies from insulin-sensitive and -resistant nondiabetic Pima Indians. Inhibitor-2 sensitive PP-1 repres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 52 9  شماره 

صفحات  -

تاریخ انتشار 2003